RNA polymerase II senses obstruction in the DNA minor groove via a conserved sensor motif.
نویسندگان
چکیده
RNA polymerase II (pol II) encounters numerous barriers during transcription elongation, including DNA strand breaks, DNA lesions, and nucleosomes. Pyrrole-imidazole (Py-Im) polyamides bind to the minor groove of DNA with programmable sequence specificity and high affinity. Previous studies suggest that Py-Im polyamides can prevent transcription factor binding, as well as interfere with pol II transcription elongation. However, the mechanism of pol II inhibition by Py-Im polyamides is unclear. Here we investigate the mechanism of how these minor-groove binders affect pol II transcription elongation. In the presence of site-specifically bound Py-Im polyamides, we find that the pol II elongation complex becomes arrested immediately upstream of the targeted DNA sequence, and is not rescued by transcription factor IIS, which is in contrast to pol II blockage by a nucleosome barrier. Further analysis reveals that two conserved pol II residues in the Switch 1 region contribute to pol II stalling. Our study suggests this motif in pol II can sense the structural changes of the DNA minor groove and can be considered a "minor groove sensor." Prolonged interference of transcription elongation by sequence-specific minor groove binders may present opportunities to target transcription addiction for cancer therapy.
منابع مشابه
A MODEL FOR THE BASIC HELIX- LOOPHELIX MOTIF AND ITS SEQUENCE SPECIFIC RECOGNITION OF DNA
A three dimensional model of the basic Helix-Loop-Helix motif and its sequence specific recognition of DNA is described. The basic-helix I is modeled as a continuous ?-helix because no ?-helix breaking residue is found between the basic region and the first helix. When the basic region of the two peptide monomers are aligned in the successive major groove of the cognate DNA, the hydrophobi...
متن کاملMechanism of RNA polymerase II stalling by DNA alkylation
Several anticancer agents that form DNA adducts in the minor groove interfere with DNA replication and transcription to induce apoptosis. Therapeutic resistance can occur, however, when cells are proficient in the removal of drug-induced damage. Acylfulvenes are a class of experimental anticancer agents with a unique repair profile suggesting their capacity to stall RNA polymerase (Pol) II and ...
متن کاملProbing minor groove recognition contacts by DNA polymerases and reverse transcriptases using 3-deaza-2'-deoxyadenosine.
Standard nucleobases all present electron density as an unshared pair of electrons to the minor groove of the double helix. Many heterocycles supporting artificial genetic systems lack this electron pair. To determine how different DNA polymerases use the pair as a substrate specificity determinant, three Family A polymerases, three Family B polymerases and three reverse transcriptases were exa...
متن کاملRNA tertiary interactions in the large ribosomal subunit: the A-minor motif.
Analysis of the 2.4-A resolution crystal structure of the large ribosomal subunit from Haloarcula marismortui reveals the existence of an abundant and ubiquitous structural motif that stabilizes RNA tertiary and quaternary structures. This motif is termed the A-minor motif, because it involves the insertion of the smooth, minor groove edges of adenines into the minor groove of neighboring helic...
متن کاملA New Family of HEAT-Like Repeat Proteins Lacking a Critical Substrate Recognition Motif Present in Related DNA Glycosylases
DNA glycosylases are important repair enzymes that eliminate a diverse array of aberrant nucleobases from the genomes of all organisms. Individual bacterial species often contain multiple paralogs of a particular glycosylase, yet the molecular and functional distinctions between these paralogs are not well understood. The recently discovered HEAT-like repeat (HLR) DNA glycosylases are distribut...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 113 44 شماره
صفحات -
تاریخ انتشار 2016